光量子コンピューター研究支援基金

スパコンを越えた究極の次世代コンピューターが世界を救う

PJ画像

プロジェクト設置責任者

東京大学大学院工学系研究科 物理工学専攻 教授
古澤 明

今年度寄付総額
907,500円
今年度寄付件数
171件
現在の継続寄付会員人数
50人

このプロジェクトに寄付をする

東京大学へのご寄付には税法上の優遇措置が適用されます。

光量子コンピューター研究支援基金ご支援のお願い

 量子コンピューターの理論を米国の物理学者リチャード・ファインマン博士が1980年頃に提唱したときは、実現までに100年かかると言われていましたが、最近にわかに社会実装されようとしています。しかし、今、話題になっている「量子コンピューター」はまだまだ限られた計算(処理)しかできない、量子を安定させるために絶対零度(マイナス273度)近くまで冷やして使う必要がある、装置が巨大である、誤り訂正がされていない等々、様々な課題が残っています。

 古澤研究室では、光の粒子(光子)を使った光量子コンピューターの研究を続けています。ループした光回路を使うことにより小型化し、常温でも安定した量子もつれを大量に発生させることにより誤り訂正も行うことができる汎用量子コンピューターの社会実装を目指しています。10年先か20年先か・・・あるいはその過程で素晴らしい発見があり数年で実現するか、まだまだ未知数です。

 たとえば、インターネットが発明されて普及する前に、インターネットがここまでわたしたちの生活を変えると予測できたでしょうか?現在のスーパーコンピューターでさえ不可能なことを光量子コンピューターで一緒に実現しましょう。

 「量子」には「重ね合わせ」や「もつれ」など、私たちの日常生活からはなかなかイメージできない不思議な特性があり、この分野に関心がない方々には敬遠されがちです。しかし、私たちの日常生活はすべて「量子」から成り立っています。

 この機会にぜひご支援をお願い申し上げます。

東京大学大学院工学系研究科 物理工学専攻
教授 古澤 明

【皆様のご寄付が研究を加速させます】

実験機.jpg

500以上の高性能な鏡やレンズで構成される古澤研究室の実験機

・研究に必要な光学機器
レーザー(光源)、光検出器、光ファイバー、ビームスプリッター、非線形光学結晶、高性能ミラーおよびレンズ、等々
 
・若手研究者の育成
海外の大学や研究所での研修(武者修行)
国際学会への積極的参加および発表
継続的な研究プログラムの設立
 

・研究者の招聘
海外で活躍する研究者との情報交換

スパコンを越えた究極の次世代コンピューターが世界を救う

【現代社会が直面する課題】

 今や誰もが一日中インターネットにつながったパソコンやスマホで仕事をして、FacebookやTwitterなどのSNSを楽しみ、ネットショップで買い物をしています。そして、日々の報道では、「AI」「IoT」「ビッグデータ」という言葉を見ない日はなく、スーパーコンピューターの活用が謳われています。しかし、現在のインターネットやコンピューターは莫大な電力消費を伴い、スパコン1台を稼働させるのに原発1基が必要とさえ言われています。またコンピューターの性能や光通信の通信容量は限界に迫っています。デジタル化社会がこのままのペースで成長を続けることは明らかに不可能です。いずれインターネットの容量やコンピューターの計算能力や電力供給が限界に達し、AIやIoTによる革新も絵に描いた餅になってしまいます。

【量子コンピューターが世界を救う】

 次世代の情報処理技術として、量子情報処理、つまり「量子コンピューター」の実用化が唯一の解決策と考えられています。従来のコンピューターの1ビットは「0」か「1」であったのに対し、量子コンピューターの1量子ビットは「重ね合わせ」という量子の不思議な特性を利用して、同時に「0」と「1」の重ねあった状態を認識することができ、この量子ビット数を増やすことにより、爆発的に処理能力を高めることができます。(コラム1) (コラム2)

 量子コンピューターは1980年代から提唱され、様々な方式で開発されてきましたが、いまだに小規模な情報処理や限られた分野に特化した処理に留まっています。

【古澤研究室の光量子コンピューターの特徴】

 t_030_RGB - コピー - コピー.png古澤研究室は量子テレポーテーションを用いた画期的な「光量子コンピューター」の実現方法を発明しました。それまでは10量子ビット程度が限界だったのに対して、事実上無限の量子ビットを使って計算をさせることが可能となり、大規模な汎用量子コンピューターが実現できるようになります。

 光の粒子(光子)を使う光量子コンピューターは、ループした光回路を用いることで、量子テレポーテーションを使った演算(簡単にいうと「加減乗除」)を無限に続けることができます。量子テレポーテーションとは、「量子もつれ(エンタングルメント)」という量子の不思議な特性を利用して、もつれ状態にある光子どうしの、ひとつに情報をインプットすると瞬時に他の光子も全く同じ情報が伝わるという特性です。(コラム3)

 既存の通信ネットワークは「光」により行われています。光量子コンピューターは光ネットワークとの親和性が非常に高いという利点があります。情報処理をそのまま光で行えるようになれば、既存の光通信網を活用して、高速且つ省エネを実現した次世代大容量光通信技術が生まれ、増え続ける情報通信量に対応することも期待されています。(コラム4)

 

ループ型光量子コンピューター

 


量子もつれ生成のイメージ動画

【今後の課題】

 いかなるコンピューターでも、導き出す回答に間違いがあってはなりません。量子コンピューターの課題は、量子テレポーテーション時に発生する量子状態・量子情報に関する誤りをいかに訂正するかです。実は現在のコンピューターでも、誤り訂正が行われています。光量子コンピューターでも、誤り訂正が完全になると、いよいよ光量子コンピューターが実用化され、成長し続けるIT社会をあらゆる面から支えることになります。(コラム5)

【ご寄付のお願い】

 非常にユニークな古澤研究室の光量子コンピューターは様々な分野で社会を救い、駆動することが期待されています。
 社会に大きな変革をもたらす光量子コンピューターの研究は、政府や大企業から拠出される研究費だけではなく、広く一般の人々からも「All Japan」で支えていただく必要があります。また、研究の性格上、長期的且つ継続的なご支援が必要です。
 光量子コンピューターが実装される社会が一日も早く到来するように、研究を加速させる皆様の力強いご支援をお願い申し上げます。(コラム6)

「今回の支援」がありがたいのは言うまでもありませんが、ご無理のない範囲で「毎月支援する」(あるいは「年2回」「毎年」)をご選択ください。※毎月、年2回、毎年のご支援(決済方法、お申し込みの変更・停止等)についてはこちらよりご確認いただけます。
※本ページよりお申し込み画面にお進みいただきますと、初期設定で「毎月支援する」が選択されています

 

コラム1 一か八か ・・・ ではなく「0か1か」、いや「0でもあり1でもある!?」

コンピューターは「0か1か」のみを判別して様々な計算をしているとよく言われます。0というひとつの情報、あるいは1というひとつの情報を1ビットと呼びます。0あるいは1が計8桁あると8ビットとなります。8ビットは1バイトという単位になります。

2ビットですと4通りの情報を表すことができます。

 00 … 1
 01 … 2
 10 … 3
 11 … 4通り

4ビットですと16通り。

 0000 … 1
 0001 … 2
 0010 … 3
 0100 … 4
 1000 … 5
 1001 … 6
 ↓
 1111 … 16通り

8ビットですと、256通りの情報を表すことができます。

 00000000 … 1
 00000001 … 2
 00000010 … 3
 00000100 … 4
 ↓
 11111111 … 256通り

 今までのコンピューター(量子コンピューターに対して古典コンピューターと呼ばれています)では、一度に表すことができるのは、たとえ何通りあってもその組み合わせのうち1つだけです。
 量子コンピューターの単位は量子ビットと呼びます。量子ビットは「重ね合わせ」という量子の不思議な特性を使って、0か1かどちらかではなく、0と1の重ね合った状態を表すことができます。
 つまり、古典コンピューターは、8ビットの場合、256通りのうち1つの情報しか表せないのに対して、量子コンピューターの8ビットは256通りの情報を同時に表すことができるのです。
 この特性によって、量子コンピューターは古典コンピューターとは比べものにならない大量の情報を処理することができるのです。

本文へ戻る

 

コラム2 量子の不思議「重ね合わせ」  えっ!?ネコが死んだり生きたり!?

量子の世界では不思議な現象が起きています。そのひとつがコラム1で述べた「重ね合わせ」といわれる特性で、量子は同時に、たとえばXの状態でもありYの状態でもあり得るということです。それを観測しようとするとその瞬間どちらかに決まってしまいます(収束する)。

 量子がXの状態かYの状態かに収束するのはルーレットやサイコロのように偶然であり確率的にしか予測できないという考え方は主にコペンハーゲンで活躍した学者が提唱したので、コペンハーゲン解釈と呼ばれています。しかし、アインシュタインは「神はサイコロ遊びなんかしない」と言って、この解釈に反対していました。

 この「重ね合わせ」の不思議を説明しようとしたのが「シュレディンガーのネコ」といわれる頭の中で想定した実験(思考実験)です。20世紀前半に活躍したオーストリア出身の物理学者、エルヴィン・シュレディンガーが提起しました。

 箱の中に、1時間後に50%の確率で分裂する放射性物質を1粒(量子)、分裂したかどうかを計測する機械、分裂が計測されたら致死性の毒ガスが出る装置、そして1匹のネコを入れる。さて、1時間後にネコは生きているか死んでいるか?

 放射能物質の分裂する可能性が50%なので、ネコが死んでいるあるいは生きている可能性はそれぞれ50%のはず。箱を開けて確認するまでネコは生きているか、死んでいるかわからない。つまり、生きている状態でもあり、死んでいる状態でもある(生と死が重ね合っている)と考えられます。

 実際には日々の生活のなかで、目に見える大きさのレベルで、ネコが生きていて且つ死んでいる状態というのはあり得ませんが、量子レベルではそのような不思議な状態があるということです。

 

コラム3 量子の不思議「もつれ(エンタングルメント)」 えっ!?テレポーテーションができる!?

テレポーテーションといえばSF小説などに出てくるような瞬間移動を思い浮かべられることでしょう。しかし、ここでいうテレポーテーションとは、人間がA地点からB地点に瞬間移動することではありません。

 量子には「もつれ」という不思議な特性があります。もつれ状態にあるふたつの量子はどれだけ離れていても同期します。つまり、量子Aを測定すると、離れた場所にある量子Bに瞬時にその影響が伝わります。AとBが双子のように振る舞うので量子もつれペアと表現されています。この現象を「幽霊のようで気味が悪い(spooky)」とアインシュタインは言い、このような量子もつれペアが存在してしまうのは、このようなことを許してしまう量子力学が不完全だからだと言いました。これに対しデンマークのニールス・ボーアは、情報伝達のスピードは光速を超えないという相対性理論を用いて、量子力学は不完全ではないと反論しました。つまり、このようなことは物理的に「あり」だと証明しました。ただ、この議論の発端となったアインシュタインらの論文にちなんで、この量子もつれペアをアインシュタイン・ポドルスキー・ローゼンペアあるいはEPRペアと呼ぶようになりました。

 その後、1970年代以降、量子もつれは実際に存在することが証明されるようになりました。量子コンピューターは量子もつれ状態にある量子Aへの操作の影響が量子Bにも現れることにより、計算を行っています。ここで、量子もつれペアつまりEPRペアによって行われる最も簡単な操作は、量子テレポーテーションと呼ばれる、入力と同じものが出力される操作です。よって「量子テレポーテーション=最も簡単な量子コンピューター」といえます。複雑な量子計算はこの量子テレポーテーション装置を少し変えることで実現できます。

 

コラム4 古澤研究室のここがすごい!!

1. 条件なしの量子テレポーテーション実験に世界で初めて成功
量子テレポーテーション=量子コンピューターと言っていいほど、量子コンピューターの実現に不可欠な量子テレポーテーションは、不確定性原理では不可能と思われていたことを行っています。不確定性原理とは、ひとつの量子について、位置と運動量の情報を同時に得ることはできないということです。なぜなら位置と運動量のうちひとつの情報を測定した瞬間、量子の状態が変わってしまうからです。よって、量子テレポーテーションは条件付きでしか実現できていませんでした。
古澤教授は、1998年、世界で初めて「条件なしの完全な量子テレポーテーション」に成功しました。この成果は世界で認められ、1998年の「『Science』誌が選ぶ1998年の10大成果」に選ばれました。

9者間もつれイメージ.jpg2. 2004年、3者間の量子もつれを生成し、量子テレポーテーションネットワーク実験に世界で初めて成功しました。2者間の量子もつれでは、AとBがもつれているか否かの2択しかありません。しかし、3者間では横に並んだ状態の場合ですと、隣どうしのAとB、BとCがもつれた状態になることができます。AとBとCが環状に並んでいる場合、AとB、BとC、AとCがもつれた状態になることができます。さらに、AとBとCが隣どうしではもつれていなくても3つの量子でもつれている状態になることもできます。2009年には3つでもつれた状態をさらに3つもつれさせて9者間もつれのテレポーテーションに成功しました。複雑で大規模な計算を可能にするには、このような複数の量子もつれを大量に生成する必要があり、2者間 ⇒ 3者間 ⇒ 9者間のステップアップは量子コンピューター実現に大きな意味があります。

3. シュレディンガーのネコ状態の量子テレポーテーションに世界で初めて成功
シュレディンガーのネコはEPRペアと並んで、量子力学黎明期の2大パラドックス・思考実験であり、その量子テレポーテーションはそれらを同時に一台の実験装置でリアルに実験を行ったことは歴史的快挙でした。

4. 2011年、従来比100倍以上の効率(61%の成功率)で量子テレポーテーションに成功
従来非常に低い効率でしか成功していなかった量子テレポーテーションを61%の効率で成功させました。50%の効率を超えると量子誤り訂正により完全な量子テレポーテーションが可能になるため、極めて画期的な成果でした。

5. 2013年、ループ構造の光回路のなかで、時間的遅延を発生させ、前後の量子を再びもつれさせる「時間領域多重」という手法を使って、従来比1000倍以上の規模で量子もつれの生成に成功しました。それまでは、光の量子(光子)を平面的に並べていたので大きなスペースを必要としましたが、ループ構造の回路内に光子を走らせることにより限られたスペースでも大規模量子もつれを発生させることが可能になりました。

t_022_RGB - コピー - コピー.png6. ループ構造をもつ光の回路によるほぼ無限の量子テレポーテーション
1つの量子テレポーテーション装置を繰り返し使うことにより、無制限に量子計算を続けられる方法を発明しました。

7. 2016年、1万倍規模
世界の開発状況を俯瞰すると、50量子ビットや100量子ビット規模の量子コンピューターは実現に近づいていると言われていますが、古澤研究室では、100万量子ビット規模の量子もつれ生成に成功しました。これにより、大型量子コンピューター実現が大きく近づきました。

8. 光通信との親和性(シャノン限界の克服)
光通信の通信容量は古典物理学的限界値であるシャノン限界に近づいています。この限界は光の中の個々の光子が独立に飛んでくることによるノイズ(ショットノイズ)により決まります。このノイズをキャンセルしシャノン限界を破った光通信も量子テレポーテーションの技術で実現できます。古澤研究室ではこの研究にも取り組んでいます。

本文へ戻る

コラム5 今後の解決すべき課題

コンピューターを名乗るからにはひとつの計算に特化するのではなく、様々な計算が大規模で可能な汎用性の高い性能が必要です。量子の重ね合わせを使う量子コンピューターの課題は、重ね合わせの状態が崩れてしまうこと(デコヒーレント)をいかに防ぎ、それが発生したときにいかに訂正するかです。訂正するためには、計算に使われる量子だけではなく、訂正のための量子が必要になり、非常に多数の量子ビットが量子もつれ状態になっている必要があります。
 

 

コラム6 今後の解決すべき課題

古澤研究室が研究しているのは汎用量子コンピューターです。つまり、どんな計算も可能なものです。世の中で「量子コンピューター」と言っても、ある特定の問題のみ解けるものが大半で、汎用量子コンピューターはそれほど多くはありません。さらに、通常のコンピューターでは誤り訂正を行い、間違った答えを出すことはあり得ませんが、現時点で世に出ている全ての量子コンピューターは誤り訂正をしておらず、大きさの大小はありますが、ある確率で間違った答えを出します。したがって、皆さんが思っているような誤った答えを出さない量子コンピューターは汎用、特殊用途用を問わず存在していません。古澤研究室は誤った答えを出さない、つまりエラーフリーの汎用量子コンピューターを研究しています。

このプロジェクトに寄付をする

「武者修行」のご報告

2019年08月02日(金)

PJ画像0

おかげさまで、本基金へのご寄付の累積が300万円を越えてきました。重ねて御礼申し上げます。ご寄付の活用方法のひとつに古澤教授に続く若手研究者の育成が挙げられます。

ご自身がカリフォルニア工科大学(Caltech)に留学して、大きなキッカケをつかんできた古澤教授は研究室の若手を積極的に海外での「武者修行」に送り出しています。古澤教授はその著書のなかで、費用対効果の高い予算の使い道のひとつとして「学生への投資」を挙げ、以下のように述べています。

私の場合、大概突拍子もないことを思いつくのだが、それを学生に実現させるため、留学させている。学生に「このお金で、3ヶ月間、留学してきなさい」と武者修行に出せば、必ずフェーズチェンジして帰ってきてくれるからだ。それにより、以前の何十倍、何百倍もの成果を上げてくれるため、非常に投資効率が高い。
(「光の量子コンピューター」P. 184、古澤明著、集英社インターナショナル新書)

皆様のご寄付の一部を渡航費・滞在費に活用させていただいて「武者修行」に行き、最近帰国したばかりの博士課程1年生お二人に、その体験を書いていただきました。古澤教授が「イノベーションは、1人の人間が、研究室に閉じこもってうなっていても決して起こせるものではない。世界中の多種多様な人々との間の化学反応を通して、偶然生まれるものではないだろうか」(P. 186、同上)と述べているように、化学反応につながるような経験を海外でしてきたお二人の報告を以下のPDFからご覧ください。

サウサンプトン大学での研究生活


サウサンプトン大学での研究生活
物理工学専攻 古澤研究室 博士課程1年   岡本 史也


ウィスコンシン大学マディソン校での研究を終えて

ウィスコンシン大学マディソン校での研究を終えて

物理工学専攻 古澤研究室 博士課程1年    高瀬  寛

 

2018年 光量子コンピューター研究活動報告

 古澤研究室は量子テレポーテーションを用いた画期的な「光量子コンピューター」の実現方法を発明した研究室です。それまでは10量子ビット程度が限界だったのに対して、事実上無限の量子ビットを使って計算をさせることが可能となり、大規模な汎用量子コンピューターが実現できるようになります。

主な活動

  • 各種国際学会にて発表
  • 2018年9月5~7日「Q Tech 2018」(Quantum Technology International Conference)於:パリ
Qtech 2018(Quantum Technology International conference、2018年9月5~7日・パリ).png
  • 2018年9月25~28日「日米量子エレクトロニクスセミナー」於:金沢
日米量子エレクトロニクスセミナー(2018年9月25~28日・金沢).png
  • 2019年2月25~2月26日「University of Tokyo – Australia National University Workshop on Quantum Technology」於:キャンベラ
  • 第128回(平成30年秋季)東京大学公開講座「科学技術の縺れ」において「量子縺れと量子コンピュータ」と題して講義(2018年11月3日)
  • 新刊書上梓
  • 「光の量子コンピューター」 集英社インターナショナル、2019年2月12日刊
  • 論文を執筆
  • “Complete temporal mode characterization of non-Gaussian states by dual homodyne measurement,”Physical Review Applied, Vol. 11, Iss. 1, Jan., 15, 2019
  • 古澤研究室の高瀬さんが平成30年度の「田中昭二賞」(優秀修士論文賞)を受賞(2019年2月)
  • 古澤研究室の芹川さんの論文“Excess Loss in Homodyne Detection Originating from Distributed Photocarrier Generation in Photodiodes”がPhysical Review Applied, Vol.10, Iss. 6, December 7, 2018に掲載、EDITORS’ SUGGESTIONに選出。

その他、様々な研究・教育活動を継続して行っています。
 

寄附金の使途及び継続支援のお願い

 寄附金が累積し次第、研究に重要な高性能光学機器等を購入します。今後とも光量子コンピューター研究支援基金をよろしくお願いいたします。なお、購入する光学機器には寄附によって購入された旨を明記する予定です。

寄附者の声

  • 古澤先生の本を読み、将来有望なのではと期待しております。微力ながら応援させていただきます!
  • パンフレットを見せていただいて興味を持ちました。東京大学から世界を牽引する量子コンピューターの技術が開発されること願っています。
  • 古澤先生でのご講義で、日本にとっての光量子コンピューター研究の重要性と、十分な研究財源を得られていない現状を知りました。
  • 本研究はノーベル賞級の研究と思われ継続的に支援したくなった。
  • 子供に「君たちの未来に投資したんだよ」と自慢出来ました。

このプロジェクトに寄付をする

寄付目的・支援先を指定できます
お名前 日付 金額 コメント
平林 隆一 2019年08月11日 10,000円 プロジェクトの成功を陰ながら応援させて頂きます。
<光量子コンピューター研究支援基金>
岡田 幸村 2019年07月29日 10,000円 コンピューター研究の発展のためにお役立て下さい。(東京銀杏会会員・岡田幸村)
<光量子コンピューター研究支援基金>
******** 2019年06月23日 5,000円 少ない金額で恐縮ですが、日本の未来のために研究活動頑張ってください。
<光量子コンピューター研究支援基金>
岡内 茂樹 2019年06月18日 10,000円 日本発の光量子コンピュータ研究の一助になればと思います。
<光量子コンピューター研究支援基金>
三輪 利博 2019年04月25日 10,000円 日本に住んで70年久しぶりの わくわく どきどき 身震い がんばれ古澤 がんばれ東大 がんばれ日本
<光量子コンピューター研究支援基金>
萩原 崇 2019年04月20日 1,000円 量子コンピュータの実現応援します!
<光量子コンピューター研究支援基金>
水野 稔 2019年04月15日 1,000円 大変期待しております。是非頑張って下さい。
<光量子コンピューター研究支援基金>
大月 亮 2019年02月26日 3,000円 是非、日本発の光量子コンピューターを開発してください!
<光量子コンピューター研究支援基金>
******** 2019年02月26日 1,000円 古澤明教授と研究チームを応援しています。
<光量子コンピューター研究支援基金>
桑原 真美 2019年01月12日 1,000円 魔法使いさん、頑張ってください。
<光量子コンピューター研究支援基金>
南塚 正人 2019年01月10日 50,000円 量子コンピュータの実用化に向けて期待しております。
<光量子コンピューター研究支援基金>
青山 剛士 2018年12月15日 10,000円 私のわずかな寄附が、体力と知力を養うために、中央食堂の
赤門拉麺などの皆様方の昼食代に利用されても構いませんので、
未来永劫、地球上の生物に明るい未来が訪れますように、
研究者の皆様方の、「ひらめき」に、期待しております。
<光量子コンピューター研究支援基金>
高野 健司 2018年09月23日 50,000円 期待してます
<光量子コンピューター研究支援基金>
長井 隆行 2018年09月20日 1,000円 先祖代々のご縁はもとより、私自身はEMPのご縁でいつも大変お世話になっております。東京大学の発展のため末永くお手伝いをできますと幸いです。今後ともどうぞよろしくお願いいたします。
<光量子コンピューター研究支援基金>
三井 律子 2018年09月14日 1,000円 さまざまな天変地異がある 世の中ですが、輝かしい未来のために 陰ながら応援しています!!
<光量子コンピューター研究支援基金>
小崎 憲明 2018年07月27日 40,000円 量子コンピューターに幸あれ!
<光量子コンピューター研究支援基金>
******** 2018年07月19日 5,000円 成功を祈念しております。
<光量子コンピューター研究支援基金>
******** 2018年07月14日 10,000円 量子コンピューターの実現は100年後にあらず!
<光量子コンピューター研究支援基金>
12次へ »

このプロジェクトに寄付をする

PJ画像

プロジェクト設置責任者

東京大学大学院工学系研究科 物理工学専攻
教授
古澤 明

今年度寄付総額
907,500円
今年度寄付件数
171件
現在の継続寄付会員人数
50人

このプロジェクトに寄付をする

東京大学へのご寄付には税法上の優遇措置が適用されます。

ご寄付の特典

「東京大学基金」の特典が適用されます。

このプロジェクトの特典

継続的なご寄付への特典

PJ画像0
〈会員証のイメージ(仮)〉

古澤研究室の光量子コンピューター研究に継続的なご支援をいただきますと、以下の特典をご用意しています。

1. 古澤研究室の実験装置見学会へご招待します。(希望者多数の場合は抽選等の可能性あり)
2. 古澤研究室の講演会のご案内や近況などをお知らせします。
3. 「Q Supporters’ Club」の会員証をお贈りします。

 会員証には「シュレディンガーのネコ」(コラム2)から発想した可愛いネコのイラストが描かれていて、寝ているネコと起きているネコの2種類があります。あなたが受け取るネコは寝ているかもしれない、あるいは起きているかもしれない重ね合わせの状態です。あなたが受け取って開封する瞬間、どちらかに収束する!?
 ぜひ、「毎月支援する」などの継続支援を選択して可愛い会員証をお受け取りください。

東京大学へのご寄付には税法上の優遇措置が適用されます。

関連プロジェクト

PJ画像

最先端の物理、天文、数学の連携で宇宙の謎に迫る

日本発アインシュタイン:カブリ数物連携宇宙研究機構(Kavli IPMU)

PJ画像

イノベーションを産む奇跡の海

マリン・フロンティア・サイエンス・プロジェクト

PJ画像

教育から社会をかえる ~100年後の地球のために~

One Earth Guardians(地球医)育成プログラム支援基金

PJ画像

我が国の新たな医学・医療のパラダイムシフトを発信

東京大学医科学研究所創立125周年・改組50周年記念事業「IMSUT One to Gogo基金」

PJ画像

卓越性、多様性、包摂性を大切にした教育学研究をリードし、社会に貢献する

教育学部・教育学研究科教育研究創発基金「教育学部創立70周年記念基金」

PJ画像

東京大学のシンクタンク ~大学と社会を結ぶ新しい回路

未来ビジョン研究センター(※2019年4月1日をもちまして、政策ビジョン研究センター(PARI)は未来ビジョン研究センター(IFI)に組織統合いたしました。)

PJ画像

誰も知らない未開拓領域に臨み、知の最前線を拓く冒険

東京大学大学院新領域創成科学研究科 「新領域創立20周年記念基金」